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I study the interplay between algebra, combinatorics, optimization, and their applications to
problems in extremal combinatorics and theoretical computer science. My current research focuses
on the use and development of discrete harmonic analysis, i.e., generalizations of discrete Fourier
analysis, to solve problems in extremal combinatorics and complexity theory. Increasingly more
problems in these areas call for such techniques, especially when they involve combinatorial objects
with a more complicated algebraic structure that resist the traditional Fourier-analytical methods
in theoretical computer science. A nascent theory has recently emerged to fill this void, and in
this vein, my current research programme (with my supervisor Yuval Filmus) aims to generalize
the classical theory of Boolean functions [1] to simplicial complexes and other domains with high
combinatorial regularity [2, 3].

Below is an overview of some recent results that I have obtained in theoretical computer science
and mathematics where discrete harmonic analysis and representation theory plays a central role.

Computational Complexity Theory. A cycle in an undirected graph is Hamiltonian if it visits
every vertex. It is a classic hard (i.e., NP-complete) problem to decide if a graph has a Hamiltonian
cycle, that is, one can efficiently reduce (i.e., in polynomial time) the problem of deciding whether
a graph has a Hamiltonian cycle to deciding if a particular sentence of propositional logic written in
conjunctive normal form (k-CNF) is a tautology. The Strong Exponential Time Hypothesis (SETH)
asserts for any ε > 0, there exists a k ≥ 3 such that deciding if a k-CNF sentence on N variables
is a tautology cannot be done in O(2(1−ε)N ) time [4]. Studying computational complexity under
this plausible but difficult to prove hypothesis has given rise to an exciting new area of theoretical
computer science called fine-grained complexity.

An even harder problem of course is to count the number of Hamiltonian cycles in a graph. In
light of the hardness of counting Hamiltonian cycles, computer scientists have designed clever pa-
rameterized algorithms where the number of steps taken by the algorithm can be analyzed in terms
of various graph parameters that measure, for example, how “tree-like” or “path-like” the input
graph is. In joint work with Radu Curticapean and Jesper Nederlof [5, 6] we give results on the
fine-grained complexity of counting Hamiltonian cycles #HC. In particular, assuming SETH, we
give a lower bound on #HC that matches the runtime of the best known parameterized algorithms
for the problem up to polynomial factors (the asymptotic notation O∗(·) suppresses such factors).

Theorem 1. [5] Assuming SETH, there is no ε > 0 such that #HC can be solved in O∗((6−ε)pw)-
time on graphs with a given path decomposition of width pw.

In other words, algorithm designers need not look further for substantially more efficient algorithms
for counting Hamiltonian cycles if they believe SETH, or on the contrary, that any constant-factor
improvement in the base of the runtime would refute SETH. The proof proceeds via a long technical
reduction that boils down to computing the rank of the Hamiltonian cycle matrix Hn, a binary
matrix indexed by perfect matchings of K2n and defined such that its ij-entry is 1 if i ∪ j is
a Hamiltonian cycle and 0 otherwise. Using the representation theory of the symmetric group
and enumerative combinatorics, we give a formula for the rank of Hn in terms of standard Young
tableaux along with an asymptotic estimate of the rank of Hn that is tight up to polynomial factors.
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Another way to prove conditional lower bounds on algorithmic problems in complexity theory is
by studying the problem’s query complexity, i.e., the number of calls (queries) that any algorithm
must make to a given black-box routine (oracle) to correctly solve the problem. In the quantum
world, one considers the quantum query complexity of the problem, where the oracle is a black-box
unitary that can be queried in superposition.

A problem in quantum computing that has been studied intensely in this framework is the so-
called Index-Erasure problem, which asks a quantum computer to prepare, for a given injective
function f : [n] → [m] where n < m, the quantum state (1/

√
n)
∑n

x=1 |f(x)〉. Here, the oracle is
a unitary matrix that sends |x〉 to |f(x)〉, i.e., the oracle answers |f(x)〉 when presented with the
query |x〉. To generate quantum states such as this on a quantum computer, one often needs addi-
tional temporary storage (qubits) and we may either insist that these qubits be reset to a default
state or be left in an arbitrary state once the algorithm terminates. The latter is called non-
coherent quantum state generation and the non-coherent quantum query complexity of a problem is
the least number of quantum oracle queries needed for a quantum algorithm to solve the problem
non-coherently. With Ansis Rosmanis [7], we give a tight lower bound on the non-coherent quan-
tum query complexity on the Index-Erasure problem, answering a question of Ambainis et al [8].

Theorem 2. [7] The bounded-error quantum query complexity of Index-Erasure is Θ(
√
n) in the

non-coherent state generation regime, provided that m ≥ n3+ε for some ε > 0.

The proof uses discrete harmonic analysis over the set of injective functions f : [n] → [m] to
solve an infinite family of semidefinite programs (SDPs) whose objective value captures the non-
coherent quantum query complexity of the problem. Relatively little was known about the algebraic
combinatorics of injective functions prior to this work, and it uncovered a remarkable connection
between non-coherent quantum query complexity and the dual structure constants (so-called Krein
parameters) of a commutative matrix algebra. The theory developed in [7] also led to new results
in coding theory [9, 10].

Boolean Functions. The analysis of Boolean functions is the study of Boolean functions f :
{0, 1}n → {0, 1} on the hypercube {0, 1}n from the perspective of Fourier analysis. This point
of view has had a profound impact on theoretical computer science which has inspired a recent
movement to extend classical results in this area to other discrete domains (see [11, 12, 13, 14],
for example). But for these more complicated domains it is not at all obvious whether analogous
theories exist. Indeed, a natural question is whether the classical complexity measures of Boolean
functions on {0, 1}n transfer to other domains, and whether they enjoy the same nice theoretical
properties. To give an example of a complexity measure, for a given Boolean function f and input
x ∈ {0, 1}n, let s(f, x) be the number of coordinates i such that if we flip the ith coordinate of
x, the value of the function changes, so that the sensitivity of f is S(f) := maxx∈{0,1}n s(f, x).
A recent breakthrough in this area was the proof of the Sensitivity Conjecture [15] which showed
the degree deg(f) of a Boolean function f on the hypercube (as a multilinear polynomial) and

its sensitivity are polynomially related, in particular, S(f) ≥
√

deg(f). With coauthors [2], we
give natural generalizations of several classic complexity measures such as sensitivity to other
domains (e.g., permutations, perfect matchings) and surprisingly show that these measures are in
fact polynomially related.

Another obstacle to generalizing the theory of Boolean functions to other domains is that we are
no longer guaranteed the existence of a unique multilinear polynomial representation of a Boolean
function, a fact that is fundamental to many polynomial methods in theoretical computer science.
With Yuval Filmus [3], we show that Boolean functions on other domains (e.g., perfect matchings)
do in fact have a unique harmonic multilinear polynomial representation that enjoys many of the
same spectral properties as the unique multilinear polynomial representation of Boolean functions
on the hypercube.
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In ongoing work with Yuval Filmus we are continuing this programme of extending fundamental
results in the analysis of Boolean functions to other combinatorial domains. Many of the results
obtained in [2, 3] draw from my work in algebraic and extremal combinatorics that I obtained in
my doctoral dissertation, which I describe below.

Extremal Combinatorics. My contributions to extremal combinatorics are in the area of Erdős-
Ko-Rado (EKR) combinatorics which studies how large families of discrete objects can be subject
to the restriction that their members pairwise intersect, as well as the structure of the largest such
families. The field’s namesake comes from the following seminal result of Erdős, Ko, and Rado.

Theorem 3 (The Erdős–Ko–Rado Theorem). Let k < n/2 and let
([n]
k

)
be the set of all k-element

subsets of [n] := {1, 2, · · · , n}. If F is intersecting, i.e., S ∩ T 6= ∅ for all S, T ∈ F , then

|F| ≤
(
n− 1

k − 1

)
.

Moreover, equality holds if and only if there exists an i ∈ [n] such that F = {S ∈
([n]
k

)
: i ∈ S}.

There are many proofs of this theorem, and it has been generalized to many different combinatorial
domains, e.g., words [16], subspaces [17], and permutations [18]. Algebraic techniques have played
a distinguished role in EKR combinatorics, so much so that a textbook [19] has been written on
the subject, wherein my early masters work [20] is referenced. With Yuval Filmus [21], we give
short and purely spectral proofs of the Erdős–Ko–Rado theorem and some of its generalizations.

In this area, it is significantly more difficult to prove what are known as t-intersecting results,
where the intersection of any two members in the family must now have size t or greater. Another
challenging line of inquiry that is common in extremal combinatorics is to show stability results,
e.g., that “large” intersecting families must be close in structure to the largest intersecting families.
In my dissertation, I show how algebraic techniques can be used to solve these sorts of problems
for perfect matchings of the complete graph K2n, i.e., sets of n disjoint edges that cover all the
vertices [22]. In particular, I answered an open question of Godsil and Meagher [19, Ch. 16] that
can be seen as the non-bipartite analogue of the Deza-Frankl Conjecture proven by Ellis, Friedgut,
and Pilpel [23], a seminal result in extremal combinatorics.

Theorem 4. [24] LetM2n be the collection of perfect matchings of K2n and let t ∈ N. If F ⊆M2n

is t-intersecting, i.e., |m ∩m′| ≥ t for all m,m′ ∈ F , then for sufficiently large n, we have

|F| ≤ (2(n− t)− 1)!!.

Moreover, equality holds if and only if F = {m ∈M2n : T ⊆ m} for some set T of t disjoint edges.

The proof of this theorem can be understood in purely graph-theoretical terms. Let Gn,t be the
graph defined over M2n such that m,m′ ∈ M2n are adjacent if |m ∩ m′| < t. The independent
sets of Gn,t, i.e., sets of vertices with no edges between them, correspond to t-intersecting families,
thus we seek the size of a largest independent set in Gn,t. The latter is an NP-complete problem,
but the well-known Lovász theta function ϑ(Gn,t) provides an upper bound for this as the optimal
value of a SDP. The proof of Theorem 4 uses discrete harmonic analysis on the space of perfect
matchings to solve an infinite family of SDPs, i.e., that ϑ(Gn,t) = (2(n − t) − 1)!! for all t and
sufficiently large n.1 The algebraic framework used in this proof and throughout my dissertation
is the theory of association schemes, a generalization of finite group character theory to finite sets
with high combinatorial regularity.

The characterization of the extremal families in Theorem 4 is deduced from a stability result for
t-intersecting families that generalizes the following result that I also showed in my dissertation.

1This upper bound is easily seen to be tight.



RESEARCH STATEMENT 4

Theorem 5. [25] For any ε and n > n(ε), any intersecting family of M2n of size greater than
(1−1/

√
e+ε)(2n−3)!! is contained in an intersecting family of the form Fij := {m ∈M2n : ij ∈ m}.

Let Mk
kn be the collection of perfect matchings of the complete k-uniform hypergraph Kk

kn on
kn vertices, i.e., pairwise disjoint sets of n hyperedges of size k that cover all the vertices. We
say F ⊆ Mk

kn is partially 2-intersecting if for any m,m′ ∈ F there exist hyperedges e ∈ m and
e′ ∈ m such that |e∩ e′| ≥ 2. With Yuval Filmus, we answer a conjecture [26, Conjecture 1] on the
characterization of the largest partially 2-intersecting families of Mk

kn.

Theorem 6. [21] For all k and sufficiently large n, F ⊆ Mk
kn is a largest partially 2-intersecting

family if and only if F = {m ∈Mk
kn : ij ⊆ e for some e ∈ m} for some 2-set ij.

The techniques involved in this work are novel, as the algebraic combinatorics of Mk
kn for k ≥ 3

confronts us with a non-commutative matrix algebra that we are still able to calculate within.

Algebraic Graph Theory. One of the most important objects in algebraic combinatorics is the
Kneser graph, a graph defined over all k-sets of an n-element set such that two k-sets are adjacent
if they have no element in common. A classic result of Lovász is that the eigenvalues ηj of this
graph are simply binomial coefficients of the form ηj = (−1)j

(
n−k
k−j
)

for all j = 0, 1, . . . , k.

There are many natural analogues of the Kneser graph for other combinatorial objects, and
over the years their eigenvalues too are now well-understood with two notable exceptions: the
permutation and perfect matching analogues of the Kneser graph. These are graphs defined over
the set of all perfect matchings of Kn,n (i.e., permutations) and K2n respectively such that two
perfect matchings are adjacent if they have no edge in common.

A long-standing open question in algebraic graph theory is whether an analogue of Lovász’s
result exists for the eigenvalues ηλ1 , ηλ2 permutation and perfect matching analogues of the Kneser
graph, i.e., an elegant combinatorial formula. Very recently, I answered this question affirmately by
showing that the eigenvalues of these graphs count a basic new combinatorial object associated with
an integer partition λ = (λ1, · · · , λ`) ` n called λ-colored (perfect matching) derangements [27].

Theorem 7 (L. 22+). Let ηλ1 and ηλ2 be the λ-eigenvalue of the permutation and perfect matching
analogues of the Kneser graph. Then ηλ1 = (−1)n−λ1Dλ

1 and ηλ2 = (−1)n−λ1Dλ
2 where Dλ

1 and Dλ
2

are the number of λ-colored derangements of Kλ1,λ1 and K2λ1, respectively.

The proof crucially uses combinatorial identities connected to classical invariant theory that were
discovered in the TCS-driven work on harmonic analysis over the space of perfect matchings [3].

Previous Research. Below is a brief sample of my earlier work in algorithmic graph theory and
combinatorial optimization, which has taken a back seat to my recent research interests.

A binary matrix has the consecutive-ones property if there exists a permutation of its columns
such that the 1’s appear consecutively in each row. In joint work with Ross McConnell [28], we
give a linear-time algorithm for certifying that a binary matrix does not have the consecutive-ones
property, and also for certifying whether a graph is an interval graph, i.e., the intersection graph of
a family of intervals on the real line. The latter graph class is particularly well-studied in algorithms
and has spawned many interesting generalizations of interest to the algorithms community. One
such generalization is the class of co-TT graphs introduced by Reed, Trotter, and Monma, who
also proposed a O(n4)-time algorithm for deciding if a graph on n vertices is co-TT [29]. With
co-authors, we improve on this result by giving a faster O(n2)-time algorithm for deciding if a graph
on n vertices is co-TT [30].
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