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Abstract.

The disjointness graph of a collection of objects is defined such that two objects are ad-
jacent if they are "disjoint". We propose a framework for studying these graphs when
the notion of disjointness is topologically defined via a bounded meet-semilattice, in
which case the adjacency matrix of the disjointness graph admits a canonical decompo-
sition in terms of the Möbius function and principal upper sets of the bounded meet-
semilattice. Moreover, if this semilattice admits a group action that is multiplicity-free
on its upper fiber, then we give a canonical "inclusion-exclusion-type" formula for the
spectrum of the disjointness graph. As a corollary, we give good expressions for the
eigenvalues of disjointness graphs of a few finite permutation groups in a unified way.

When the semilattice is a Cameron–Deza permutation geometry, the canonical decom-
position of its disjointness graph, also known as the permutation derangement graph,
is related to a normalization (integral form) of the forgotten symmetric functions under
Frobenius’ characteristic map. In his seminal monograph on the subject, Macdonald
remarks that this basis has "no particularly simple direct description" and has since
been largely forgotten in the symmetric function literature. Our results suggest that
forgotten bases can provide simpler expressions for character sums over normal sets
of group elements that admit simple combinatorial/topological descriptions.

Keywords: Möbius Inversion, Representation Theory, Derangements, Algebraic Graph
Theory, Association Schemes, Extremal Combinatorics, Group Theory, Posets.

To the memory of Ian G. Macdonald

1 Introduction

The disjointness graph of a collection of objects is defined such that two objects are ad-
jacent if they are "disjoint". The prototypical example is the Kneser graph, that is, the
disjointness graph of the set of all k-element subsets of a n-element set, a cornerstone
of algebraic and topological combinatorics. Disjointness graphs play a key role in ex-
tremal combinatorics, in particular, the field of Erdős–Ko–Rado (EKR) combinatorics, as
their independent sets are "intersecting" families, by design. Many seminal results in
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extremal combinatorics amount to characterizing the maximum independent sets of an
infinite family of disjointness graphs, defined over a variety of different combinatorial
domains and for varying notions of "disjointness". Spectral methods have played a vital
role in the development of this area, which has been masterfully expounded in Godsil
and Meagher’s textbook on the subject [4].

However, what it means for two objects to be "disjoint" is of course vague and sub-
ject to interpretation. To make this a proper definition, we begin with the universe of
finite meet-semilattices (X,≤) with a unique bottom element ∅ so that two top elements
x, y ∈ X a priori are disjoint if x ∧ y = ∅. In this way, we associate to each such meet-
semilattice a unique disjointness graph defined on its top elements (see Section 2). Most,
if not all of the EKR-type results in the literature fit into this framework, and a goal of
this work is to give good general expressions for the eigenvalues of disjointness graphs
for meet-semilattices that are sufficiently regular (e.g., Theorem 2 and Theorem 3). We
would be remiss not to mention previous order-theoretical frameworks for computing
eigenvalues of (disjointness) graphs in P-polynomial association schemes, e.g., Delsarte’s
regular semilattices [3], Stanton’s harmonic posets [14], and Terwilliger’s uniform posets [16].
In this work we assume less regularity on the poset, which allows us to consider the
disjointness graphs of meet-semilattices associated with other finite spaces such as per-
mutation groups that generally do not belong to any of the aforementioned frameworks.

In the permutation group setting, the eigenvalues of disjointness graphs, also known
as derangement graphs, not only have applications to extremal combinatorics, but also
to classic factorization problems in groups. Larsen, Shalev, and Tiep [7] have recently
shown that any element in a sufficiently large transitive finite simple permutation group
is a product of two derangements. They conjecture this should hold for all finite simple
groups, but their character estimates are too crude to deduce this. In Section 4, we show
our techniques give a simple proof that for all n, any element of the symmetric group Sn
is a product of two derangements (in fact, Ω(n!) pairs of derangements). Whether our
methods can be extended to finite simple permutation groups is left for future work.

This work can be seen as a conceptual companion paper to [8], which considers in much
detail the eigenvalues of the permutation and perfect matching derangement graphs.

2 Posets, Incidence Algebras, and Disjointness Graphs

In this section, we formally define the disjointness graph of a bounded meet-semilattice
and give a canonical decomposition of its adjacency matrix that we call its zeta decompo-
sition. We first recall some order-theoretic preliminaries (see [6] for more details).

A partially ordered set or poset (X,≤) is a set X and a binary relation ≤ that satisfies
x ≤ x for all x ∈ X; if x ≤ y ≤ x, then x = y; and if x ≤ y ≤ z, then x ≤ y. We write
x < y if x ≤ y and x 6= y. We say that y covers x if x < y and there exists no z such
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that x < z < y. A set Y ⊆ X is a principal upper set if Y = {y ∈ X : x ≤ y} for some
x ∈ X. We say x ∈ X is a top element if no other element covers it, and we say x ∈ X is a
bottom element if it covers no other element. Let X̄ ⊆ X be the set of top elements. Two
elements are incomparable if both x 6≤ y and y 6≤ x. Two elements x, y ∈ X have a meet
if there exists an element x ∧ y ∈ X such that x ∧ y ≤ x, x ∧ y ≤ y, and if both w ≤ x
and w ≤ y, then w ≤ x ∧ y for all w ∈ X. A meet-semilattice is a poset such that all meets
exist. A meet-semilattice is bounded if there exists a unique ∅ ∈ X such that x ∧ ∅ = ∅
for all x ∈ X. Any finite poset (X,≤) can be made into a bounded meet-semilattice
(X ∪ {∅},≤) by setting ∅ ≤ x for all x ∈ X.

A graded poset (X,≤) is a poset where all the maximal chains have the same length.
Graded posets are equipped with a rank function r from X to the natural numbers in-
ductively defined such that r(x̄) = 0 for all top elements x̄ ∈ X̄, and if y covers x then
r(y) = r(x) + 1. The rank of a graded poset r(X,≤) is the maximum rank over its ele-
ments. Let Xk := {x ∈ X : r(x) = k} be the fiber of rank k elements of X. The rank of the
elements of the top fiber equals the rank of the poset, i.e., Xr(X,≤) = X̄.

The elements of the incidence algebra I(X,≤) of a poset (X,≤) are functions f assign-
ing to each nonempty interval [x, y] a scalar f (x, y) drawn from a commutative ring with
unity. Addition + is defined pointwise and multiplication ∗ is convolution, i.e.,

( f ∗ g)(x, z) := ∑
x≤y≤z

f (x, y)g(y, z)

for all f , g ∈ I(X,≤) and x, z ∈ X. Any incidence algebra can be realized as an upper-
triangular matrix algebra as follows. To each function f ∈ I(X,≤) we associate a |X| ×
|X| matrix A such that Ax,y := f (x, y) whenever x ≤ y, and is 0 otherwise. Reordering
the indices of A with respect to any total ordering that extends the partial order ≤ puts
A into upper-triangular form such that its zero-pattern above the diagonal is determined
by the incomparable elements of (X,≤).

The identity function ι of an incidence algebra is defined such that ι(x, y) := 1 if
x = y, and is 0 otherwise. The zeta function of an incidence algebra is the support of the
comparable elements, i.e., the constant function ζ(x, y) = 1 for every nonempty interval
[x, y]. The Möbius function of a poset is recursively defined for all pairs x ≤ z ∈ X as

µ(x, z) := − ∑
x≤y<z

µ(x, y)

where µ(x, x) := 1. It is well-known that the Möbius function is the inverse of the zeta
function, that is,

µζ = ζµ = ι.

Since the zeta function is represented by an upper unitriangular matrix with integer
entries, the Möbius function is also represented by an upper unitriangular matrix with
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integer entries. In particular, we have

µζ(x, z) = [µ ∗ ζ](x, z) = ∑
x≤y≤z

µ(x, y)ζ(y, z) = ∑
x≤y≤z

µ(x, y) = 0 (2.1)

for all x < z. For any bounded meet-semilattice (X,≤), let µx := µ(∅, x) for all x ∈ X.
For any x ∈ X, define the incidence vector wx ∈ R|X̄| such that (wx)z = ζ(x, z). Let Wk

be the |Xk| × |X̄| incidence matrix defined such that (Wk)y,z = ζ(y, z) for all y ∈ Xk and
z ∈ X̄. For each x ∈ X, define its zeta matrix as Zx := wxw>x . For any bounded graded
meet-semilattice (X,≤), let Zk := WkW>k be the kth zeta matrix (c.f. Reimann matrix [3]).
Note that (Zx)y,z = 1 if and only if x ≤ y and x ≤ z, thus

(Zk)y,z =

(
∑

x∈Xk

Zx

)
y,z

= ∑
x∈Xk

ζ(x, y)ζ(x, z) = |{x ∈ Xk : x ≤ y and x ≤ z}|.

Observe that Z0 = Z∅ = J where J is the |X̄| × |X̄| all-ones matrix. We are now in a
position to define the disjointness graph of (X,≤) and its canonical zeta decomposition.

Definition 1 (Disjointness Graph). For any bounded meet-semilattice (X,≤), its disjointness
graph Φ := (X̄, E) is defined such that xy ∈ E if x ∧ y = ∅.

Theorem 1 (Zeta Decomposition). Let Φ be the disjointness graph of a bounded meet-semilattice
(X,≤). Then we have

Φ = ∑
x∈X

µxZx.

Proof. If y, z ∈ X̄ are disjoint, then ζ(w, y)ζ(w, z) = 0 for all w 6= ∅, and so Φy,z = 1.
If y, z ∈ X̄ are not disjoint, then y ∧ z 6= ∅. Since ζ(w, y)ζ(w, z) = 1 if and only if
w ∈ [∅, y ∧ z], Equation (2.1) gives

Φy,z = ∑
x∈X

µx(Zx)y,z = ∑
∅≤x≤y∧z

µx(Zx)y,z = ∑
∅≤x≤y∧z

µx = 0,

as desired.

The zeta decomposition already gives an upper bound on the rank of Φ, but it is indeed
difficult to deduce further information about the eigenvalues of Φ without assuming
some form of combinatorial regularity on (X,≤). For instance, we say that the Möbius
function µ of a bounded graded meet-semilattice (X,≤) is rank-invariant if µx = µy for all
x, y ∈ Xk and 0 ≤ k ≤ r(X,≤). Bounded graded meet-semilattices with rank-invariant
Möbius functions admit simpler zeta decompositions:

Φ =
r(X,≤)

∑
k=0

µk Zk. (2.2)
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Moreover, the eigenvalues of zeta matrices are much easier to compute when (X,≤) has
combinatorial regularity (and there are fewer zeta matrices); however, the eigenspaces of
the zeta matrices are typically misaligned. In this case, the relation between the spectrum
of the individual Zk’s and their sum is non-linear, and a careful analysis is needed to
say anything definitive about the eigenvalues of Φ. On the other hand, if we assume
that the eigenspaces of the zeta matrices are aligned, i.e., they have a common system of
orthogonal eigenvectors {vη}η, then we get a canonical eigenvalue expression:

η(Φ) =
r(X,≤)

∑
k=0

µk η(Zk) (2.3)

where η(·) denotes the matrix’s eigenvalue corresponding to vη. Despite appearances,
this scenario is sufficiently general to include many interesting groups and Gelfand pairs
not included in previous frameworks. Since the eigenvalues of the zeta matrices are non-
negative, this gives an "inclusion-exclusion-type" formula for the eigenvalues of Φ.

In the next section we continue with this regularity assumption and restrict our atten-
tion to the special case of bounded graded meet-semilattices whose zeta matrices belong
to Bose–Mesner algebras of conjugacy-class association schemes of permutation groups.

3 Eigenvalues of Derangement Graphs

For permutation groups G, we say that two elements g, h ∈ G are "disjoint" if they
are derangements of one another, i.e., gh−1 has no fixed points. In this section, we give
a general expression for the eigenvalues of Φn with respect to any infinite family of
permutation groups {Gn}∞

n=0 with the property that Gn ≤ Gn+1.
For each n, we define a bounded graded meet-semilattice (X(n),≤) such that Xk(n) is

the set of Gn-double-translates of the cosets Gn/Gn−k for all 0 ≤ k ≤ n, and y ∈ Xk+1(n)
covers x ∈ Xk(n) if y ⊆ x. We abuse notation by setting X := X(n) when n is clear
from context. Since Gn acts transitively on each fiber, its Möbius function µ is rank-
invariant. We say that g ∈ Gn is an abstract derangement if it does not lie in any conjugate
of Gn−1, equivalently, id ∧ g = ∅. Note that the disjointness graph Φn of (X,≤) is
the Cayley graph of Gn generated by its abstract derangements. By Theorem 1, its zeta
decomposition is Φn = ∑n

k=0 µk Zk.
Since Dn is normal, i.e., closed under conjugation by Gn, the graph Φn belongs to the

Bose–Mesner algebra of Gn’s conjugacy-class association scheme (see [5], for example).
Its eigenvalues ηi(Φ) are indexed by the set Irr(Gn) of inequivalent ordinary irreps ρi
of Gn. Let ρ(k) := 1 ↑Gn

Gn−k
be the permutation representation of Gn acting on cosets

Gn/Gn−k. Let mi(k) be the multiplicity of ρi in ρ(k), and let χi be its character. Its degree
di := χi(1) divides |Gn|, thus the co-degree d̄i := |Gn|/χi(1) is a positive integer.



6 Nathan Lindzey

Theorem 2 (Eigenvalues of the Abstract Derangement Graph). For all ρi ∈ Irr(Gn), we
have

ηi(Φn) = d̄i

n

∑
k=0

µk
mi(k)

[N(Gn−k) : Gn−k]

where N(Gn−k) is the normalizer of Gn−k in Gn.

Proof. By Frobenius Reciprocity we have

mi(k) = 〈1 ↑Gn
Gn−k

, χi〉Gn = 〈1Gn−k , χi ↓Gn
Gn−k
〉Gn−k =

1
|Gn−k| ∑

g∈Gn−k

χi(g).

Without loss of generality, we may assume that the first column of the orthogonal pro-
jector Ei onto the ρi-isotypic component is the normalized irreducible character di

|Gn|χi.
Without loss of generality, we may also assume that the first row of Wk is indexed by
id ∈ Gn so that the support of the first row is indexed by all conjugates of Gn−k. There
are [Gn : N(Gn−k)] such conjugates. The first row of W>k is the characteristic vector of
Gn−k, which gives us (

W>k,nEν

)
1,1

=
|Gn−k|
|Gn|

dimi(k).

This identity holds for all subgroups isomorphic to Gn−k, hence

(ZkEi)1,1 =
|Gn−k|
|N(Gn−k)|

dimi(k).

Dividing by (Ei)1,1 = d2
i /|Gn| gives us

ZkEi =
|Gn|mi(k)

di[N(Gn−k) : Gn−k]
Ei =

d̄imi(k)
[N(Gn−k) : Gn−k]

Ei ,

which finishes the proof.

The degrees di and multiplicities mi(k) can be computed combinatorially provided there
exists a so-called branching rule for Gn that describes the restriction of the Gn-irreducible
ρi(k) into Gn−1-irreducibles. This relation is encoded by a graded poset called the Brat-
teli diagram of {Gn}∞

n=0 whose elements of rank k are the Gk-irreducibles. These posets
often posess a great deal of combinatorial regularity, making it possible to enumerate
all the paths from the trivial representation ρ1(k) of Gk to a given irreducible ρi(n). We
demonstrate this by determining the eigenvalues of the derangement graphs for the Cox-
eter group of type Bn. Closed-form expressions for the eigenvalues of the derangement
graph of type An−1, i.e., the permutation derangement graph, were determined in [8].
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3.1 Derangement Graphs of Finite Coxeter Groups

Let Gn = An−1
∼= Sn, the symmetric group on n symbols, in which case the semilattice

(X,≤) is a Cameron–Deza permutation geometry [1]. The Bratteli diagram in this case is
Young’s lattice Y, the quintessential example of a differential poset [12], which gives us

ηλ(Φn) =
n!
f λ

n

∑
k=0

(−1)k

k!
mλ(k) =

n!
f λ

n

∑
k=0

(−1)k

k!
f λ/(n−k)

where f λ counts the number of standard Young tableaux of shape λ (i.e., the number of
paths of the form ∅  λ in Young’s lattice) and f λ/(n−k) counts the number of skew
standard Young tableaux of skew shape λ/(n− k), i.e., the number of paths of the form
(n − k)  λ in Young’s lattice. By the Lindström–Gessel–Viennot lemma [13], these
enumerations can be carried out efficiently via determinants, which bodes well for a
‘good’ combinatorial interpretation. The determinantal identity for f λ is particularly
simple, admitting a nice closed form known as the hook length formula f λ = n!/Hλ where
Hλ = d̄λ is the product of the hook lengths of the cells of λ. Thus we have

ηλ(Φn) = Hλ

n

∑
k=0

(−1)k

k!
f λ/(n−k).

A similar result holds for the hyperoctahedral group Bn = Z2 o Sn. Following [17, §2.1.2],
recall that the Bn-irreducibles are indexed by double partitions of n, i.e., ordered pairs of
partitions (λ, λ̄) such that |λ|+ |λ̄| = n. Let S(λ,∅) to be the Bn-irreducible pulled back
from Sn-irreducible Sλ under the surjection Bn � Sn. Let Cε be the linear representation
associated to the character ε : Bn � {±1} where the canonical generators of Zn

2 act by
(−1), and elements of Sn act trivially. Define S(∅,λ̄) := S(λ̄,∅) ⊗ Cε. Moreover, for a
double partition (λ, λ̄) of n, define the Bn-irreducible

S(λ,λ̄) :=
(

S(λ,∅) � S(∅,λ̄)
)
↑Bn

Bλ×Bλ̄

where � denotes the outer tensor product of representations. The branching rule for Bn
is simply

1 ↑Bn
Bn−1

=
⊕
λ+

S(λ+,λ̄) ⊕
⊕
λ̄+

S(λ,λ̄+)

where the summations range over all ways of adding an outer corner to λ and λ̄ respec-
tively. Iterating the branching law gives

1 ↑Bn
Bn−k

=
⊕

((n−k),∅)↗k(λ,λ̄)

S(λ,λ̄)

where the summation ranges over all ways of successively adding k outer corners to
the trivial representation ((n − k),∅) of Bn−k. Here, the multiplicity m(λ,λ̄) of (λ, λ̄)
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is simply the number of paths of the form ((n − k),∅)  (λ, λ̄) in the 2-differential
poset Y2 = Y×Y. It follows that a standard tableau of double partition shape (λ, λ̄) is a
path (∅,∅)  (λ, λ̄) in Y2, i.e., a filling of the diagrams of λ and λ̄ with the numbers
1, 2, . . . , |λ| + |λ̄| such that the numbers are strictly increasing along rows and down
columns. The number of such standard tableaux f (λ,λ̄) = ( n

|λ|) f λ f λ̄, thus

mλ,λ̄ =

(
n
|λ̄|

)
f λ/(n−k) f λ̄.

The foregoing shows for all double partitions (λ, λ̄) of n that

ηλ,λ̄(Φn) =
2nn!

( n
|λ|) f λ f λ̄

n

∑
k=0

(−1)k

2kk!

(
n
|λ̄|

)
f λ/(n−k) f λ̄/∅ = (n)|λ̄|Hλ

n

∑
k=0

(−1)k

k!
2n−k f λ/(n−k).

The alternating group Altn E Sn and the demihyperoctahedral group Dn E Bn are the unique
index-2 normal subgroups of Sn and Bn, respectively. Similar eigenvalue calculations
for the derangement graphs of Altn and Dn can be carried out mutandis mutandis or via
Clifford theory, which we defer to a forthcoming full version of this work.

3.2 Derangement Graphs of Finite General Linear Groups

For any prime power q, let Gn = GL(n, q) be the finite general linear group over Fq, noting
that Gn−1 = GL(n − 1, q) ∼= GL(n − 1, q) × 1 ≤ Gn. The representation theory of the
finite general linear group is far more baroque than the "q → 1" case of the symmetric
group, so we are only able to provide a rough sketch of our results on GL(n, q), deferring
formal proofs to the full version. Our treatment follows Macdonald [9, §IV].

Let ψn(q) := ∏n
i=1(q

i − 1). Basic counting reveals that |Gn| = q(
n
2)ψn(q). Let Θ

denote the set of irreducible polynomials of Fq[x] aside from x, and let Par denote the
set of all integer partitions. The irreducibles and conjugacy classes of Gn are indexed by
partition-valued functions λ : Θ→ Par such that ∑ϕ∈Θ deg ϕ · |λ(ϕ)| = n. For all ϕ ∈ Θ,
let qϕ := qdeg ϕ, and let n(λ) := ∑i≥1(i − 1)λi. The character degrees of Gn admit the
following expression, which can be seen as a q-analogue of the hook formula [9, §IV.6]:

dλ = ψn(q) ∏
ϕ∈Θ

qn(λ(ϕ)>)
ϕ H̃λ(qϕ)

−1 where H̃λ(qϕ) := ∏
(i,j)∈λ

(q
hλ

i,j
ϕ − 1).

The Möbius number of (X,≤) is µk = (−1)kq(
k
2) (here, the "q → 1" case recovers the

Cameron-Deza permutation geometry). Theorem 2 gives us

ηλ(Φn) =
|Gn|
dλ

n

∑
k=0

(−1)kq(
k
2)

|Gk|
mλ(k).
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The multiplicity mλ(k) =: Kλ,(n−k,1k) is given by a combinatorial Pieri-type rule in the
representation ring of GL(n, q) which has a Hopf algebra structure. This gives us

= q(
n
2) ∏

ϕ∈Θ

H̃λ(ϕ)(qϕ)

qn(λ(ϕ)>)
ϕ

n

∑
k=0

(−1)k

ψk(q)
Kλ,(n−k,1k).

When λ is the trivial irrep, we recover Chen and Rota’s formula for the q-derangements
of V = Fn

q , i.e., the number of g ∈ Gn such that gv 6= v ∀v ∈ V \ {0} [2, Ex. 3.2].
Whether the eigenvalues ηλ(Φn) of the q-derangement graph admit a nice combinatorial
interpretation and closed form analogous to the "q→ 1" case [8] is left for future work.

3.3 The t-Disjointness Graph

A natural generalization of the disjointness graph that has been central to extremal
combinatorics is the t-disjointness graph Φn,t defined such that x, y ∈ Xn are adjacent
if x∧ y ∈ X<t where X<t ⊆ X is the set of elements of rank less than t. Many seminal re-
sults in extremal combinatorics amount to characterizing the maximum independent sets
of infinite families of t-disjointness graphs for various combinatorial domains (see [4] for
an overview of these results). Note that Φn,t is simply the disjointness graph of the quo-
tient (X/X<t,≤) obtained by identifying all elements of rank less than t with ∅. Here,
the zeta matrices Z≥t

k of (X/X<t,≤) are defined such that Z≥t
0 := J and Z≥t

k := Zk+t−1
for all 1 ≤ k ≤ r(X)− t + 1. Indeed, this poset retains most of the essential properties
of (X,≤) except that it has a more general Möbius function µ≥t

k which can be computed
by solving a unitriangular system of linear equations.

For example, in the case where Gn = Sn, the Möbius function is µk = (−1)k, and one
can show that µ≥t

k−t+1 = (−1)k−t−1(k−1
t−1) for all k ≥ t (see [11, Lemma 31], for example).

A t-derangement of Sn is an element with less than t fixed points. The following formula
for the eigenvalues of the t-derangement graphs of Sn is immediate.

Theorem 3 (Eigenvalues of the t-Derangement Graph of Sn). For all λ ` n, we have

ηλ(Φn,t) = Hλ

(
f λ/(n−t+1)

(t− 1)!
+ (−1)t−1

n

∑
k=t

(−1)k

k!

(
k− 1
t− 1

)
f λ/(n−k)

)
.

The t = 1 case was considered in the companion paper [8], where it was shown that the
eigenvalues admit a good combinatorial interpretation with a closed-form expression.
For t ≥ 2, the eigenvalues do not seem to share many of the nice properties that hold
in the t = 1 case (e.g., the alternating sign property [8, Corollary 2]), but we leave a more
careful analysis for future work.
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4 Products of Derangements

In this section, we give a classical application to factorization in the symmetric group,
which we present in the matrix-theoretic language of association schemes [5]. We con-
tinue with the same notation and assumptions introduced in the previous section.

Let A0, A1, · · · , Ad be the standard basis for the conjugacy-class association scheme
of a group Gn. For a matrix A = ∑d

i=0 αi Ai, we define [Ai]A := αi to be the coefficient αi
corresponding to Ai. Let ci be a representative of the conjugacy class Ci of Gn. It is well-
known that the eigenvalue of Cay(Gn, Ci) corresponding to the ρ-isotypic component
equals |Ci|χρ(ci)/ dim ρ. Let ηρ be the eigenvalue of Φn := Cay(Gn, Dn) corresponding
to ρ, and let Eρ denote the orthogonal projection onto the ρ-isotypic component. Then

[Ai] Φ2
n =

Tr
(

Ai Φ2
n
)

|Gn||Ci|
=

Tr
(

∑ρ∈Irr(Gn) |Ci|χρ(ci) · η2
ρEρ

)
|Gn||Ci|χρ(1)

=
1
|Gn| ∑

ρ∈Irr(Gn)

dim ρ χρ(ci)η
2
ρ.

Since [Ai] Φ2
n = 0 if and only if no ci ∈ Ci can be written as a product of two derange-

ments, one aims to show that ∑ρ∈Irr(Gn) dim ρ χρ(ci)η
2
ρ > 0 for each conjugacy class Ci.

We demonstrate how our techniques make short work of this task when Gn = Sn.

Theorem 4. Any permutation of Sn can be written as a product of Ω(n!) pairs of derangements.

In other words, there exists a constant c > 0 such that (Φ2
n)π,σ ≥ cn! for all π, σ ∈ Sn.

Proof. Let hλ
i,j be the hook length of the cell (i, j) ∈ λ. Define Hλ := ∏(i,j)∈λ hλ

i,j. Recall
that χλ(1) = dλ = n!/Hλ by the hook length formula, which gives us

[Aµ] Φ2
n =

1
n! ∑

λ`n
dλ χλ(µ)η2

λ = ∑
λ`n

χλ(µ)

Hλ
D2

λ

where the Dλ’s are the so-called λ-colored derangements introduced in [8], where it was
also shown that Dλ ≤ H1(λ) := hλ

1,1hλ
1,2 · · · hλ

1,λ1
[8, Proposition 11]. It is well-known that

|χλ(µ)| ≤ dλ for all µ ` n. For any λ = (λ1, . . . , λ`) ` n, let λ′ := (λ2, . . . , λ`) ` (n− λ1).
These upper bounds along with the fact that D(n) = |Dn| < (n! + 1)/e give us

∑
λ`n

χλ(µ)

Hλ
D2

λ ≥
n!
e2 − ∑

λ`n
λ 6=(n)

|χλ(µ)|
H(λ′)

Dλ ≥
n!
e2 − ∑

λ`n
λ 6=(n)

dλ

H(λ′)
Dλ ≥ n!

 1
e2 − ∑

λ`n
λ 6=(n)

1
H(λ′)2


≥ n!

(
1
e2 −

n−1

∑
k=1

1
k!2 ∑

λ`k
d2

λ

)

= n!

[
1
e2 −

n−1

∑
k=1

1
k!

]
.
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The bracketed sum is slightly negative, so we need a more refined analysis. Noting that
∑k=4

1
k! ≈ 0.051615162 and e−2 ≈ 0.135335283, we claim for all n ≥ 8 and µ ` n that

e−2

 ∑
λ`n

n−λ1≤3

χλ(µ)

(
H1(λ)2

n!Hλ

)− n−1

∑
k=4

1
k!

> 0.

It suffices to show that the bracketed summation is no less than 2/5 for all n ≥ 8. Since
χ(n−1,1)(µ) ≥ −1 for all µ ` n, we have

∑
λ`n

n−λ1≤3

χλ(µ)

(
H1(λ)2

n!Hλ

)
= ∑

λ`n
n−λ1≤3

χλ(µ)

χλ(1)

(
1

H(λ′)2

)
≥ 1− 1

n
− 2

4
− 1

9
− 2

36
>

2
5

,

which completes the proof.

For n ≤ 7, one can verify in SAGE [15] that the entries of Φ2
n are nonzero. Similar results

hold for other permutation groups, which we consider in future work.

5 Afterword: The Forgotten Combinatorial Basis

Our results on Sn translate to results on symmetric functions via Frobenius’ characteris-
tic map. In particular, the zeta matrices Zk in the zeta decomposition of the derangement
graph of Sn correspond to a normalization (integral form) of the hook-shaped forgotten
symmetric functions f(n−k,1k), which are dual to the elementary symmetric functions. In
the language of assocation schemes, the integral form of fλ has been dubbed the combi-
natorial basis in design-theoretic work of Martin and Sagan (see [10, Theorem 10]).

In his seminal monograph [9], Macdonald coined the term ’forgotten’ symmetric
functions since they had virtually no applications due to their unwieldy form [9, pg. 22].
Our results suggest that forgotten bases can provide simpler expressions for character
sums over normal sets of elements with simple combinatorial/topological descriptions
(e.g., t-derangements). Following Martin and Sagan’s lead, we hope our work on the
combinatorial basis kindles an iota of the interest that Macdonald’s work has garnered,
whose contributions to the theory of symmetric functions will surely never be forgotten.
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