Eigenvalues of Disjointness Graphs CombinaTexas 2024

Nathan Lindzey Technion – Israel Institute of Technology

March 24, 2024

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

The Kneser Graph

Let $KG_{n,k}$ be the graph on $\binom{[n]}{k}$ such that $S \sim T \Leftrightarrow S \cap T = \emptyset$ for all $S, T \in \binom{[n]}{k}$.

The Kneser Graph

Let $KG_{n,k}$ be the graph on $\binom{[n]}{k}$ such that $S \sim T \Leftrightarrow S \cap T = \emptyset$ for all $S, T \in \binom{[n]}{k}$.

・ロ・・母・・ヨ・・ヨ・ シック

The Kneser Graph

Let $KG_{n,k}$ be the graph on $\binom{[n]}{k}$ such that $S \sim T \Leftrightarrow S \cap T = \emptyset$ for all $S, T \in \binom{[n]}{k}$.

・ロ・・母・・ヨ・・ヨ・ シック

In 1979, Lovász gave a spectral proof of the Erdős–Ko–Rado Theorem.

Theorem (The Erdős–Ko–Rado Theorem)

Let $n \ge 2k$ and $\mathcal{F} \subseteq {\binom{[n]}{k}}$ be an intersecting family, i.e, $S \cap T \neq \emptyset \ \forall S, T \in \mathcal{F}$. Then $|\mathcal{F}| \le {\binom{n-1}{k-1}}.$

In 1979, Lovász gave a spectral proof of the Erdős–Ko–Rado Theorem.

Theorem (The Erdős–Ko–Rado Theorem)

Let $n \ge 2k$ and $\mathcal{F} \subseteq {\binom{[n]}{k}}$ be an intersecting family, i.e, $S \cap T \neq \emptyset \ \forall S, T \in \mathcal{F}$. Then $|\mathcal{F}| \le {\binom{n-1}{k-1}}$. Equivalently, $\alpha(\mathsf{KG}_{n,k}) = {\binom{n-1}{k-1}}$.

Let $S \subseteq V$ be an independent set of a d-regular graph G = (V, E). Let λ_{\min} be the least eigenvalue of its adjacency matrix. Then

$$|S| \leq |V| rac{-\lambda_{\min}}{d - \lambda_{\min}}.$$

Let $S \subseteq V$ be an independent set of a d-regular graph G = (V, E). Let λ_{\min} be the least eigenvalue of its adjacency matrix. Then

$$|S| \leq |V| rac{-\lambda_{\min}}{d-\lambda_{\min}}.$$

Theorem (Lovász '79)

The eigenvalues of
$$KG_{n,k}$$
 are $\lambda_j = (-1)^j \binom{n-k-j}{k-j}$ for all $j = 0, 1, \dots, k$.

$$\binom{n-1}{k-1} \le |S|$$

<ロト < 団ト < 巨ト < 巨ト < 巨ト 三 のへで 4/15

Let $S \subseteq V$ be an independent set of a d-regular graph G = (V, E). Let λ_{\min} be the least eigenvalue of its adjacency matrix. Then

$$|S| \leq |V| rac{-\lambda_{\min}}{d-\lambda_{\min}}.$$

Theorem (Lovász '79)

The eigenvalues of KG_{n,k} are
$$\lambda_j = (-1)^j \binom{n-k-j}{k-j}$$
 for all $j = 0, 1, \dots, k$.

$$\binom{n-1}{k-1} \leq |S| \leq \binom{n}{k} \frac{-\binom{n-k-1}{k-1}}{\binom{n-k}{k} - \binom{n-k-1}{k-1}}$$

・ロ・・西・・ヨ・・ヨ・ ヨー うへぐ

Let $S \subseteq V$ be an independent set of a d-regular graph G = (V, E). Let λ_{\min} be the least eigenvalue of its adjacency matrix. Then

$$|S| \leq |V| rac{-\lambda_{\min}}{d-\lambda_{\min}}.$$

Theorem (Lovász '79)

The eigenvalues of KG_{n,k} are
$$\lambda_j = (-1)^j \binom{n-k-j}{k-j}$$
 for all $j = 0, 1, \dots, k$.

$$\binom{n-1}{k-1} \le |S| \le \binom{n}{k} \frac{-\binom{n-k-1}{k-1}}{\binom{n-k}{k} - \binom{n-k-1}{k-1}} = \binom{n-1}{k-1} \square$$

Sets

• :

- Words
- Groups
- Matrices
- Partitions
- Permutations
- Vector Spaces
- Finite Geometries
- Perfect Matchings

A poset (X, \leq) is a *meet-semilattice* if $(x \land y) \in X$ for any pair $x, y \in X$.

A poset (X, \leq) is a *meet-semilattice* if $(x \land y) \in X$ for any pair $x, y \in X$.

Two elements $x, y \in X$ are *disjoint* if $x \wedge y = \emptyset$.

A poset (X, \leq) is a *meet-semilattice* if $(x \land y) \in X$ for any pair $x, y \in X$.

Two elements $x, y \in X$ are *disjoint* if $x \wedge y = \emptyset$.

Let X^* be the set of maximal elements of a finite meet-semilattice (X, \leq) .

A poset (X, \leq) is a *meet-semilattice* if $(x \land y) \in X$ for any pair $x, y \in X$.

Two elements $x, y \in X$ are *disjoint* if $x \wedge y = \emptyset$.

Let X^* be the set of maximal elements of a finite meet-semilattice (X, \leq) .

Let Φ be the *disjointness graph* of (X, \leq) , i.e., $x \sim y$ if $x \wedge y = \emptyset$ for all $x, y \in X^*$.

A poset (X, \leq) is a *meet-semilattice* if $(x \land y) \in X$ for any pair $x, y \in X$.

Two elements $x, y \in X$ are *disjoint* if $x \wedge y = \emptyset$.

Let X^* be the set of maximal elements of a finite meet-semilattice (X, \leq) .

Let Φ be the *disjointness graph* of (X, \leq) , i.e., $x \sim y$ if $x \wedge y = \emptyset$ for all $x, y \in X^*$.

For each $x \in X$, let v_x be the vector indexed by maximal elements $x^* \in X^*$ such that

$$v_x(x^*) = egin{cases} 1 & ext{if } x \leq x^*; \ 0 & ext{otherwise}. \end{cases}$$

A poset (X, \leq) is a *meet-semilattice* if $(x \land y) \in X$ for any pair $x, y \in X$.

Two elements $x, y \in X$ are *disjoint* if $x \wedge y = \emptyset$.

Let X^* be the set of maximal elements of a finite meet-semilattice (X, \leq) .

Let Φ be the *disjointness graph* of (X, \leq) , i.e., $x \sim y$ if $x \wedge y = \emptyset$ for all $x, y \in X^*$.

For each $x \in X$, let v_x be the vector indexed by maximal elements $x^* \in X^*$ such that

$$v_x(x^*) = egin{cases} 1 & ext{if } x \leq x^*; \ 0 & ext{otherwise}. \end{cases}$$

Theorem

If
$$(X, \leq)$$
 is a meet-semilattice, then $\Phi = \sum_{x \in X} \mu(\emptyset, x) \ v_x v_x^\top$.

Regularity Assumptions

Natural semilattices often

• are graded: $X = \{\emptyset\} \sqcup X_1 \sqcup \cdots \sqcup X_{n-1} \sqcup X_n^*$,

Regularity Assumptions

Natural semilattices often

- are graded: $X = \{\emptyset\} \sqcup X_1 \sqcup \cdots \sqcup X_{n-1} \sqcup X_n^*$,
- admit natural group actions,

Natural semilattices often

- are graded: $X = \{\emptyset\} \sqcup X_1 \sqcup \cdots \sqcup X_{n-1} \sqcup X_n^*$,
- admit natural group actions,
- and have invariant Möbius functs: $\mu_k \equiv \mu(\emptyset, x) = \mu(\emptyset, x') \ \forall x, x' \in X_k \ 0 \le k \le n$.

Regularity Assumptions

Natural semilattices often

- are graded: $X = \{\emptyset\} \sqcup X_1 \sqcup \cdots \sqcup X_{n-1} \sqcup X_n^*$,
- admit natural group actions,
- and have invariant Möbius functs: $\mu_k \equiv \mu(\emptyset, x) = \mu(\emptyset, x') \ \forall x, x' \in X_k \ 0 \le k \le n$.

Theorem (Zeta Decomposition)

Let (X, \leq) be a graded meet-semilattice such that μ is rank-invariant. Then the disjointness graph Φ of (X, \leq) admits the following decomposition:

$$\Phi = \sum_{k=0}^{n} \mu_k Z_k.$$

Theorem (Zeta Decomposition)

Let (X, \leq) be a graded meet-semilattice such that μ is rank-invariant. Then the disjointness graph Φ of (X, \leq) admits the following decomposition:

$$\Phi = \sum_{k=0}^{n} \mu_k Z_k.$$

• The Z_k 's have non-negative eigenvalues that are easier to compute.

Theorem (Zeta Decomposition)

Let (X, \leq) be a graded meet-semilattice such that μ is rank-invariant. Then the disjointness graph Φ of (X, \leq) admits the following decomposition:

$$\Phi = \sum_{k=0}^{n} \mu_k Z_k.$$

- The Z_k 's have non-negative eigenvalues that are easier to compute.
- For sufficiently regular (X, \leq) the zeta matrices commute ...

Theorem (Zeta Decomposition)

Let (X, \leq) be a graded meet-semilattice such that μ is rank-invariant. Then the disjointness graph Φ of (X, \leq) admits the following decomposition:

$$\Phi = \sum_{k=0}^{n} \mu_k Z_k.$$

- The Z_k 's have non-negative eigenvalues that are easier to compute.
- For sufficiently regular (X, \leq) the zeta matrices commute ...
- ... eigenvalues of Φ are then an alternating sum of the eigenvalues of the Z_k 's.

Let $X_n^* = S_n$ be the group of permutations of [n].

Let $X_n^* = S_n$ be the group of permutations of [n].

 X_n^* is the set of maximal elements of the $(n \times n)$ -chessboard complex (X, \leq) where

Permutations

Let $X_n^* = S_n$ be the group of permutations of [n].

 X_n^* is the set of maximal elements of the $(n \times n)$ -chessboard complex (X, \leq) where

$$X_k = \left\{ \{(i_1, j_1), \dots, (i_k, j_k)\} \in \binom{[n] \times [n]}{k} : i_1, \dots, i_k \text{ distinct, } j_1, \dots, j_k \text{ distinct} \right\}.$$

Permutations

Let $X_n^* = S_n$ be the group of permutations of [n].

 X_n^* is the set of maximal elements of the $(n \times n)$ -chessboard complex (X, \leq) where

$$X_k = \left\{ \{(i_1, j_1), \dots, (i_k, j_k)\} \in \binom{[n] \times [n]}{k} : i_1, \dots, i_k \text{ distinct, } j_1, \dots, j_k \text{ distinct} \right\}.$$

Its disjointness graph Φ_n is known as the derangement graph $\mathcal{D}_n = \operatorname{Cay}(S_n, D_n)$.

Permutations

Let $X_n^* = S_n$ be the group of permutations of [n].

 X_n^* is the set of maximal elements of the $(n \times n)$ -chessboard complex (X, \leq) where

$$X_k = \left\{ \{(i_1, j_1), \dots, (i_k, j_k)\} \in \binom{[n] \times [n]}{k} : i_1, \dots, i_k \text{ distinct, } j_1, \dots, j_k \text{ distinct} \right\}.$$

Its disjointness graph Φ_n is known as the derangement graph $\mathcal{D}_n = \operatorname{Cay}(S_n, D_n)$.

Theorem (Deza–Frankl '79, Cameron–Ku '03, Larose–Malvenuto '04, Renteln '07, Ellis, Friedgut–Pilpel '08, Godsil–Meagher '09) For all $n \ge 2$, we have $\alpha(\mathcal{D}_n) = (n-1)!$. The eigenvalues η_{λ} of \mathcal{D}_n are much more difficult to compute than the Kneser graph.

The eigenvalues η_{λ} of \mathcal{D}_n are much more difficult to compute than the Kneser graph.

$$\eta_\lambda = rac{1}{\chi^\lambda(1)} \sum_{\pi \in D_n} \chi^\lambda(\pi).$$

Determinantal and recursive expressions for η_{λ} were determined by Renteln '07.

The eigenvalues η_{λ} of \mathcal{D}_n are much more difficult to compute than the Kneser graph.

$$\eta_\lambda = rac{1}{\chi^\lambda(1)} \sum_{\pi \in \mathcal{D}_n} \chi^\lambda(\pi).$$

Determinantal and recursive expressions for η_{λ} were determined by Renteln '07.

Since \mathcal{D}_n is the disjointness graph Φ_n of the $(n \times n)$ -chessboard complex, we have

$$\mathcal{D}_n = \Phi_n = \sum_{k=0}^n \mu_k Z_k = \sum_{k=0}^n (-1)^k Z_k.$$

The zeta matrices Z_k commute.

Eigenvalues of the Derangement Graph

Open Question: Lovász-type result (closed forms) for the eigenvalues of \mathcal{D}_n ?

the eigenvalues of the perfect matching graph M(2k) for $k \le 5$. Ideally, we would like to have a closed form for all the eigenvalues of all the perfect matching graphs, but this seems to be a very difficult problem. Toward this

1/15

Theorem (L. '23)

Let $\lambda = (\lambda_1, \dots, \lambda_\ell) \vdash n$ and η_λ be the λ -eigenvalue of \mathcal{D}_n . Then

$$\eta_{\lambda} = (-1)^{n-\lambda_1} D_{\lambda}$$

where D_{λ} is the number of λ -colored derangements.

Let
$$\lambda = (4, 4, 2) \vdash 10$$
.

Let
$$\lambda = (4, 4, 2) \vdash 10$$
.

Let $\lambda = (4, 4, 2) \vdash 10$.

Take $\sigma \in \text{Sym}([\lambda_1])$ and assign colors to symbols so that cycles are *monochromatic*.

Let $\lambda = (4, 4, 2) \vdash 10$.

Take $\sigma \in \text{Sym}([\lambda_1])$ and assign colors to symbols so that cycles are *monochromatic*.

<ロト < 団ト < 巨ト < 巨ト < 巨ト 三 のへで 12/15

Let $\lambda = (4, 4, 2) \vdash 10$.

Take $\sigma \in \text{Sym}([\lambda_1])$ and assign colors to symbols so that cycles are *monochromatic*.

 $D_{\lambda} := \# \lambda$ -colored permutations such that no white symbol gets sent to itself.

Closed Forms?

λ -colored permutations = $h_{\lambda}(1,1)h_{\lambda}(1,2)\cdots h_{\lambda}(1,\lambda_1) =: H^1(\lambda)$.

λ -colored permutations = $h_{\lambda}(1,1)h_{\lambda}(1,2)\cdots h_{\lambda}(1,\lambda_1) =: H^1(\lambda)$.

 $\# \lambda$ -colored derangements $D_\lambda pprox H^1(\lambda) e_\lambda^{-1}$

(L. '23) Explicit closed form for D_{λ} derived via the calculus of finite differences.

Cambridge Studies in Advanced Mathematics 62

Enumerative Combinatorics Volume 2

RICHARD P. STANLEY

7.63. a. [2+] For $\lambda \vdash n$ define

$$d_{\lambda} = \sum_{w \in \mathfrak{D}_n} \chi^{\lambda}(w),$$

where \mathfrak{D}_n denotes the set of all derangements (permutations without fixed points) in \mathfrak{S}_n . Show that

$$\sum_{\lambda \vdash n} d_{\lambda} s_{\lambda} = \sum_{k=0}^{n} (-1)^{n-k} (n)_k h_1^{n-k} h_k.$$

b. [2+] Deduce from (a) that for $1 \le k \le n$,

$$d_{(j,1^{n-j})} = (-1)^{n-j} \binom{n}{j} D_j + (-1)^{n-1} \binom{n-1}{j},$$

where $D_j = \# \mathfrak{D}_j$ (discussed in Example 2.2.1).

Let $\lambda \vdash n$ be an integer partition.

The λ -immanant of a $n \times n$ matrix A is defined such that

$$\operatorname{Imm}_{\lambda}(A) = \sum_{\sigma \in S_n} \chi^{\lambda}(\sigma) \ A_{1,\sigma(1)} A_{2,\sigma(2)} \cdots A_{n,\sigma(n)}.$$

For $\chi^{(1^n)} = \text{sgn}$, we recover the *determinant*. For $\chi^{(n)} = 1$, we recover the *permanent*.

(L. '23) Closed form expressions for $Imm_{\lambda}(J_n - I_n)$ where J_n is the all-ones matrix:

$$\operatorname{Imm}_{\lambda}(J_n-I_n)=\sum_{\sigma\in S_n}\chi^{\lambda}(\sigma)\ (1-\delta_{1,\sigma(1)})\cdots(1-\delta_{n,\sigma(n)})=\sum_{\sigma\in D_n}\chi^{\lambda}(\sigma)=d_{\lambda}.$$

Other combinatorial/binary matrices with 'nice' immanants?

Let $\lambda \vdash n$ be an integer partition.

The λ -immanant of a $n \times n$ matrix A is defined such that

$$\operatorname{Imm}_{\lambda}(A) = \sum_{\sigma \in S_n} \chi^{\lambda}(\sigma) \ A_{1,\sigma(1)} A_{2,\sigma(2)} \cdots A_{n,\sigma(n)}.$$

For $\chi^{(1^n)} = \text{sgn}$, we recover the *determinant*. For $\chi^{(n)} = 1$, we recover the *permanent*.

(L. '23) Closed form expressions for $Imm_{\lambda}(J_n - I_n)$ where J_n is the all-ones matrix:

$$\operatorname{Imm}_{\lambda}(J_n-I_n)=\sum_{\sigma\in S_n}\chi^{\lambda}(\sigma)\ (1-\delta_{1,\sigma(1)})\cdots(1-\delta_{n,\sigma(n)})=\sum_{\sigma\in D_n}\chi^{\lambda}(\sigma)=d_{\lambda}.$$

Other combinatorial/binary matrices with 'nice' immanants?

That's all. Thanks!