Eigenvalues of Disjointness Graphs

CombinaTexas 2024

Nathan Lindzey
Technion - Israel Institute of Technology

March 24, 2024

The Kneser Graph

Let $K G_{n, k}$ be the graph on $\binom{[n]}{k}$ such that $S \sim T \Leftrightarrow S \cap T=\emptyset$ for all $S, T \in\binom{[n]}{k}$.

The Kneser Graph

Let $K G_{n, k}$ be the graph on $\binom{[n]}{k}$ such that $S \sim T \Leftrightarrow S \cap T=\emptyset$ for all $S, T \in\binom{[n]}{k}$.

The Kneser Graph

Let $K G_{n, k}$ be the graph on $\binom{[n]}{k}$ such that $S \sim T \Leftrightarrow S \cap T=\emptyset$ for all $S, T \in\binom{[n]}{k}$.

The Kneser Graph

In 1979, Lovász gave a spectral proof of the Erdős-Ko-Rado Theorem.

Theorem (The Erdős-Ko-Rado Theorem)

Let $n \geq 2 k$ and $\mathcal{F} \subseteq\binom{[n]}{k}$ be an intersecting family, i.e, $S \cap T \neq \emptyset \forall S, T \in \mathcal{F}$. Then

$$
|\mathcal{F}| \leq\binom{ n-1}{k-1}
$$

The Kneser Graph

In 1979, Lovász gave a spectral proof of the Erdős-Ko-Rado Theorem.

Theorem (The Erdős-Ko-Rado Theorem)

Let $n \geq 2 k$ and $\mathcal{F} \subseteq\binom{[n]}{k}$ be an intersecting family, i.e, $S \cap T \neq \emptyset \forall S, T \in \mathcal{F}$. Then

$$
|\mathcal{F}| \leq\binom{ n-1}{k-1}
$$

Equivalently, $\alpha\left(K G_{n, k}\right)=\binom{n-1}{k-1}$.

Eigenvalues and The Hoffman Bound

Theorem (Hoffman 70's)

Let $S \subseteq V$ be an independent set of a d-regular graph $G=(V, E)$. Let $\lambda_{\text {min }}$ be the least eigenvalue of its adjacency matrix. Then

$$
|S| \leq|V| \frac{-\lambda_{\min }}{d-\lambda_{\min }}
$$

Eigenvalues and The Hoffman Bound

Theorem (Hoffman 70's)

Let $S \subseteq V$ be an independent set of a d-regular graph $G=(V, E)$. Let $\lambda_{\text {min }}$ be the least eigenvalue of its adjacency matrix. Then

$$
|S| \leq|V| \frac{-\lambda_{\min }}{d-\lambda_{\min }}
$$

Theorem (Lovász '79)

The eigenvalues of $K G_{n, k}$ are $\lambda_{j}=(-1)^{j}\binom{n-k-j}{k-j}$ for all $j=0,1, \ldots, k$.

$$
\binom{n-1}{k-1} \leq|S|
$$

Eigenvalues and The Hoffman Bound

Theorem (Hoffman 70's)

Let $S \subseteq V$ be an independent set of a d-regular graph $G=(V, E)$. Let $\lambda_{\text {min }}$ be the least eigenvalue of its adjacency matrix. Then

$$
|S| \leq|V| \frac{-\lambda_{\min }}{d-\lambda_{\min }}
$$

Theorem (Lovász '79)

The eigenvalues of $K G_{n, k}$ are $\lambda_{j}=(-1)^{j}\binom{n-k-j}{k-j}$ for all $j=0,1, \ldots, k$.

$$
\binom{n-1}{k-1} \leq|S| \leq\binom{ n}{k} \frac{-\binom{n-k-1}{k-1}}{\binom{n-k}{k}-\binom{n-k-1}{k-1}}
$$

Eigenvalues and The Hoffman Bound

Theorem (Hoffman 70's)

Let $S \subseteq V$ be an independent set of a d-regular graph $G=(V, E)$. Let $\lambda_{\text {min }}$ be the least eigenvalue of its adjacency matrix. Then

$$
|S| \leq|V| \frac{-\lambda_{\min }}{d-\lambda_{\min }}
$$

Theorem (Lovász '79)

The eigenvalues of $K G_{n, k}$ are $\lambda_{j}=(-1)^{j}\binom{n-k-j}{k-j}$ for all $j=0,1, \ldots, k$.

$$
\binom{n-1}{k-1} \leq|S| \leq\binom{ n}{k} \frac{-\binom{n-k-1}{k-1}}{\binom{n-k}{k}-\binom{n-k-1}{k-1}}=\binom{n-1}{k-1} \square
$$

Erdős-Ko-Rado Combinatorics

- Sets
- Words
- Groups
- Matrices
- Partitions
- Permutations
- Vector Spaces
- Finite Geometries
- Perfect Matchings
- :

Disjointness Graphs

A poset (X, \leq) is a meet-semilattice if $(x \wedge y) \in X$ for any pair $x, y \in X$.

Disjointness Graphs

A poset (X, \leq) is a meet-semilattice if $(x \wedge y) \in X$ for any pair $x, y \in X$.
Two elements $x, y \in X$ are disjoint if $x \wedge y=\emptyset$.

Disjointness Graphs

A poset (X, \leq) is a meet-semilattice if $(x \wedge y) \in X$ for any pair $x, y \in X$.
Two elements $x, y \in X$ are disjoint if $x \wedge y=\emptyset$.
Let X^{*} be the set of maximal elements of a finite meet-semilattice (X, \leq).

Disjointness Graphs

A poset (X, \leq) is a meet-semilattice if $(x \wedge y) \in X$ for any pair $x, y \in X$.
Two elements $x, y \in X$ are disjoint if $x \wedge y=\emptyset$.
Let X^{*} be the set of maximal elements of a finite meet-semilattice (X, \leq).
Let Φ be the disjointness graph of (X, \leq), i.e., $x \sim y$ if $x \wedge y=\emptyset$ for all $x, y \in X^{*}$.

Disjointness Graphs

A poset (X, \leq) is a meet-semilattice if $(x \wedge y) \in X$ for any pair $x, y \in X$.
Two elements $x, y \in X$ are disjoint if $x \wedge y=\emptyset$.
Let X^{*} be the set of maximal elements of a finite meet-semilattice (X, \leq).
Let Φ be the disjointness graph of (X, \leq), i.e., $x \sim y$ if $x \wedge y=\emptyset$ for all $x, y \in X^{*}$.
For each $x \in X$, let v_{x} be the vector indexed by maximal elements $x^{*} \in X^{*}$ such that

$$
v_{x}\left(x^{*}\right)= \begin{cases}1 & \text { if } x \leq x^{*} \\ 0 & \text { otherwise }\end{cases}
$$

Disjointness Graphs

A poset (X, \leq) is a meet-semilattice if $(x \wedge y) \in X$ for any pair $x, y \in X$.
Two elements $x, y \in X$ are disjoint if $x \wedge y=\emptyset$.
Let X^{*} be the set of maximal elements of a finite meet-semilattice (X, \leq).
Let Φ be the disjointness graph of (X, \leq), i.e., $x \sim y$ if $x \wedge y=\emptyset$ for all $x, y \in X^{*}$.
For each $x \in X$, let v_{x} be the vector indexed by maximal elements $x^{*} \in X^{*}$ such that

$$
v_{x}\left(x^{*}\right)= \begin{cases}1 & \text { if } x \leq x^{*} \\ 0 & \text { otherwise }\end{cases}
$$

Theorem

If (X, \leq) is a meet-semilattice, then $\Phi=\sum_{x \in X} \mu(\emptyset, x) v_{x} v_{x}^{\top}$.

Regularity Assumptions

Natural semilattices often

- are graded: $X=\{\emptyset\} \sqcup X_{1} \sqcup \cdots \sqcup X_{n-1} \sqcup X_{n}^{*}$,

Regularity Assumptions

Natural semilattices often

- are graded: $X=\{\emptyset\} \sqcup X_{1} \sqcup \cdots \sqcup X_{n-1} \sqcup X_{n}^{*}$,
- admit natural group actions,

Regularity Assumptions

Natural semilattices often

- are graded: $X=\{\emptyset\} \sqcup X_{1} \sqcup \cdots \sqcup X_{n-1} \sqcup X_{n}^{*}$,
- admit natural group actions,
- and have invariant Möbius functs: $\mu_{k} \equiv \mu(\emptyset, x)=\mu\left(\emptyset, x^{\prime}\right) \forall x, x^{\prime} \in X_{k} 0 \leq k \leq n$.

Regularity Assumptions

Natural semilattices often

- are graded: $X=\{\emptyset\} \sqcup X_{1} \sqcup \cdots \sqcup X_{n-1} \sqcup X_{n}^{*}$,
- admit natural group actions,
- and have invariant Möbius functs: $\mu_{k} \equiv \mu(\emptyset, x)=\mu\left(\emptyset, x^{\prime}\right) \forall x, x^{\prime} \in X_{k} 0 \leq k \leq n$.

Zeta Decomposition

Define $Z_{k}=\sum_{x \in X_{k}} v_{x} v_{x}^{\top}$ as the k-th zeta matrix of a graded meet-semilattice (X, \leq).

Zeta Decomposition

Define $Z_{k}=\sum_{x \in X_{k}} v_{x} v_{x}^{\top}$ as the k-th zeta matrix of a graded meet-semilattice (X, \leq).

Theorem (Zeta Decomposition)

Let (X, \leq) be a graded meet-semilattice such that μ is rank-invariant. Then the disjointness graph Φ of (X, \leq) admits the following decomposition:

$$
\Phi=\sum_{k=0}^{n} \mu_{k} Z_{k}
$$

Zeta Decomposition

Define $Z_{k}=\sum_{x \in X_{k}} v_{x} v_{x}^{\top}$ as the k-th zeta matrix of a graded meet-semilattice (X, \leq).

Theorem (Zeta Decomposition)

Let (X, \leq) be a graded meet-semilattice such that μ is rank-invariant. Then the disjointness graph Φ of (X, \leq) admits the following decomposition:

$$
\Phi=\sum_{k=0}^{n} \mu_{k} Z_{k}
$$

- The Z_{k} 's have non-negative eigenvalues that are easier to compute.

Zeta Decomposition

Define $Z_{k}=\sum_{x \in X_{k}} v_{x} v_{x}^{\top}$ as the k-th zeta matrix of a graded meet-semilattice (X, \leq).

Theorem (Zeta Decomposition)

Let (X, \leq) be a graded meet-semilattice such that μ is rank-invariant. Then the disjointness graph Φ of (X, \leq) admits the following decomposition:

$$
\Phi=\sum_{k=0}^{n} \mu_{k} Z_{k} .
$$

- The Z_{k} 's have non-negative eigenvalues that are easier to compute.
- For sufficiently regular (X, \leq) the zeta matrices commute ...

Zeta Decomposition

Define $Z_{k}=\sum_{x \in X_{k}} v_{x} v_{x}^{\top}$ as the k-th zeta matrix of a graded meet-semilattice (X, \leq).

Theorem (Zeta Decomposition)

Let (X, \leq) be a graded meet-semilattice such that μ is rank-invariant. Then the disjointness graph Φ of (X, \leq) admits the following decomposition:

$$
\Phi=\sum_{k=0}^{n} \mu_{k} Z_{k} .
$$

- The Z_{k} 's have non-negative eigenvalues that are easier to compute.
- For sufficiently regular (X, \leq) the zeta matrices commute ...
- ... eigenvalues of Φ are then an alternating sum of the eigenvalues of the Z_{k} 's.

Permutations

Let $X_{n}^{*}=S_{n}$ be the group of permutations of $[n]$.

Permutations

Let $X_{n}^{*}=S_{n}$ be the group of permutations of $[n]$.
X_{n}^{*} is the set of maximal elements of the $(n \times n)$-chessboard complex (X, \leq) where

Permutations

Let $X_{n}^{*}=S_{n}$ be the group of permutations of $[n]$.
X_{n}^{*} is the set of maximal elements of the $(n \times n)$-chessboard complex (X, \leq) where

$$
X_{k}=\left\{\left\{\left(i_{1}, j_{1}\right), \ldots,\left(i_{k}, j_{k}\right)\right\} \in\binom{[n] \times[n]}{k}: i_{1}, \ldots, i_{k} \text { distinct, } j_{1}, \ldots, j_{k} \text { distinct }\right\} .
$$

Permutations

Let $X_{n}^{*}=S_{n}$ be the group of permutations of $[n]$.
X_{n}^{*} is the set of maximal elements of the $(n \times n)$-chessboard complex (X, \leq) where

$$
X_{k}=\left\{\left\{\left(i_{1}, j_{1}\right), \ldots,\left(i_{k}, j_{k}\right)\right\} \in\binom{[n] \times[n]}{k}: i_{1}, \ldots, i_{k} \text { distinct, } j_{1}, \ldots, j_{k} \text { distinct }\right\} .
$$

Its disjointness graph Φ_{n} is known as the derangement graph $\mathcal{D}_{n}=\operatorname{Cay}\left(S_{n}, D_{n}\right)$.

Permutations

Let $X_{n}^{*}=S_{n}$ be the group of permutations of $[n]$.
X_{n}^{*} is the set of maximal elements of the $(n \times n)$-chessboard complex (X, \leq) where

$$
X_{k}=\left\{\left\{\left(i_{1}, j_{1}\right), \ldots,\left(i_{k}, j_{k}\right)\right\} \in\binom{[n] \times[n]}{k}: i_{1}, \ldots, i_{k} \text { distinct, } j_{1}, \ldots, j_{k} \text { distinct }\right\} .
$$

Its disjointness graph Φ_{n} is known as the derangement graph $\mathcal{D}_{n}=\operatorname{Cay}\left(S_{n}, D_{n}\right)$.

Theorem (Deza-Frankl '79, Cameron-Ku '03, Larose-Malvenuto '04, Renteln '07, Ellis, Friedgut-Pilpel '08, Godsil-Meagher '09)
For all $n \geq 2$, we have $\alpha\left(\mathcal{D}_{n}\right)=(n-1)$!.

The Derangement Graph

The eigenvalues η_{λ} of \mathcal{D}_{n} are much more difficult to compute than the Kneser graph.

The Derangement Graph

The eigenvalues η_{λ} of \mathcal{D}_{n} are much more difficult to compute than the Kneser graph.

$$
\eta_{\lambda}=\frac{1}{\chi^{\lambda}(1)} \sum_{\pi \in D_{n}} \chi^{\lambda}(\pi)
$$

Determinantal and recursive expressions for η_{λ} were determined by Renteln '07.

The Derangement Graph

The eigenvalues η_{λ} of \mathcal{D}_{n} are much more difficult to compute than the Kneser graph.

$$
\eta_{\lambda}=\frac{1}{\chi^{\lambda}(1)} \sum_{\pi \in D_{n}} \chi^{\lambda}(\pi)
$$

Determinantal and recursive expressions for η_{λ} were determined by Renteln '07.
Since \mathcal{D}_{n} is the disjointness graph Φ_{n} of the $(n \times n)$-chessboard complex, we have

$$
\mathcal{D}_{n}=\Phi_{n}=\sum_{k=0}^{n} \mu_{k} Z_{k}=\sum_{k=0}^{n}(-1)^{k} Z_{k}
$$

The zeta matrices Z_{k} commute.

Eigenvalues of the Derangement Graph

Open Question: Lovász-type result (closed forms) for the eigenvalues of \mathcal{D}_{n} ?

the eigenvalues of the perfect matching graph $M(2 k)$ for $k \leq 5$. Ideally, we would like to have a closed form for all the eigenvalues of all the perfect matching graphs, but this seems to be a very difficult problem. Toward this

Theorem (L. '23)

Let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{\ell}\right) \vdash n$ and η_{λ} be the λ-eigenvalue of \mathcal{D}_{n}. Then

$$
\eta_{\lambda}=(-1)^{n-\lambda_{1}} D_{\lambda}
$$

where D_{λ} is the number of λ-colored derangements.
λ-Colored Permutations and Derangements
Let $\lambda=(4,4,2) \vdash 10$.

λ-Colored Permutations and Derangements

Let $\lambda=(4,4,2) \vdash 10$.

λ-Colored Permutations and Derangements

Let $\lambda=(4,4,2) \vdash 10$.

Take $\sigma \in \operatorname{Sym}\left(\left[\lambda_{1}\right]\right)$ and assign colors to symbols so that cycles are monochromatic.

λ-Colored Permutations and Derangements

Let $\lambda=(4,4,2) \vdash 10$.

Take $\sigma \in \operatorname{Sym}\left(\left[\lambda_{1}\right]\right)$ and assign colors to symbols so that cycles are monochromatic.
$(1)(2)(3)(4)$
$(1,2,4)(3)$
$(1)(2)(3,4)$
$(1,4)(2,3)$

λ-Colored Permutations and Derangements

Let $\lambda=(4,4,2) \vdash 10$.

Take $\sigma \in \operatorname{Sym}\left(\left[\lambda_{1}\right]\right)$ and assign colors to symbols so that cycles are monochromatic.

$D_{\lambda}:=\# \lambda$-colored permutations such that no white symbol gets sent to itself.

Closed Forms?

$\# \lambda$-colored permutations $=h_{\lambda}(1,1) h_{\lambda}(1,2) \cdots h_{\lambda}\left(1, \lambda_{1}\right)=: H^{1}(\lambda)$.

6	5	3	2

Closed Forms?

$\# \lambda$-colored permutations $=h_{\lambda}(1,1) h_{\lambda}(1,2) \cdots h_{\lambda}\left(1, \lambda_{1}\right)=: H^{1}(\lambda)$.

6	5	3	2

$\# \lambda$-colored derangements $D_{\lambda} \approx H^{1}(\lambda) e_{\lambda}^{-1}$
(L. '23) Explicit closed form for D_{λ} derived via the calculus of finite differences.

Character Sums of Derangements

Cambridge Studies in Advanced Mathematics 62

Enumerative Combinatorics

Volume 2
7.63. a. $[2+]$ For $\lambda \vdash n$ define

$$
d_{\lambda}=\sum_{w \in \mathfrak{D}_{n}} \chi^{\lambda}(w),
$$

where \mathfrak{D}_{n} denotes the set of all derangements (permutations without fixed points) in \mathfrak{S}_{n}. Show that

$$
\sum_{\lambda \vdash n} d_{\lambda} s_{\lambda}=\sum_{k=0}^{n}(-1)^{n-k}(n)_{k} h_{1}^{n-k} h_{k} .
$$

b. [2+] Deduce from (a) that for $1 \leq k \leq n$,

$$
d_{\left\langle j, 1^{n-j}\right\rangle}=(-1)^{n-j}\binom{n}{j} D_{j}+(-1)^{n-1}\binom{n-1}{j},
$$

where $D_{j}=\# \mathfrak{D}_{j}$ (discussed in Example 2.2.1).

Immanants of the Complete Graph K_{n}

Let $\lambda \vdash n$ be an integer partition.
The λ-immanant of a $n \times n$ matrix A is defined such that

$$
\operatorname{Imm}_{\lambda}(A)=\sum_{\sigma \in S_{n}} \chi^{\lambda}(\sigma) A_{1, \sigma(1)} A_{2, \sigma(2)} \cdots A_{n, \sigma(n)}
$$

For $\chi^{\left(1^{n}\right)}=\mathrm{sgn}$, we recover the determinant. For $\chi^{(n)}=1$, we recover the permanent.
(L. '23) Closed form expressions for $\operatorname{Imm}_{\lambda}\left(J_{n}-I_{n}\right)$ where J_{n} is the all-ones matrix:

$$
\operatorname{Imm}_{\lambda}\left(J_{n}-I_{n}\right)=\sum_{\sigma \in S_{n}} \chi^{\lambda}(\sigma)\left(1-\delta_{1, \sigma(1)}\right) \cdots\left(1-\delta_{n, \sigma(n)}\right)=\sum_{\sigma \in D_{n}} \chi^{\lambda}(\sigma)=d_{\lambda} .
$$

Other combinatorial/binary matrices with 'nice' immanants?

Immanants of the Complete Graph K_{n}

Let $\lambda \vdash n$ be an integer partition.
The λ-immanant of a $n \times n$ matrix A is defined such that

$$
\operatorname{Imm}_{\lambda}(A)=\sum_{\sigma \in S_{n}} \chi^{\lambda}(\sigma) A_{1, \sigma(1)} A_{2, \sigma(2)} \cdots A_{n, \sigma(n)}
$$

For $\chi^{\left(1^{n}\right)}=\mathrm{sgn}$, we recover the determinant. For $\chi^{(n)}=1$, we recover the permanent.
(L. '23) Closed form expressions for $\operatorname{Imm}_{\lambda}\left(J_{n}-I_{n}\right)$ where J_{n} is the all-ones matrix:

$$
\operatorname{Imm}_{\lambda}\left(J_{n}-I_{n}\right)=\sum_{\sigma \in S_{n}} \chi^{\lambda}(\sigma)\left(1-\delta_{1, \sigma(1)}\right) \cdots\left(1-\delta_{n, \sigma(n)}\right)=\sum_{\sigma \in D_{n}} \chi^{\lambda}(\sigma)=d_{\lambda} .
$$

Other combinatorial/binary matrices with 'nice' immanants?
That's all. Thanks!

